

Software Design Document for the Land Information System

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of Grand Challenge
Applications in the Earth, Space, Life, and Microgravity Sciences

Version 3.3

Revision history:
Version Summary of Changes Date
1.0 Initial release. 8/13/02
2.2 Release for Milestone H 3/18/03
3.1 Release for Milestone I 9/15/03
3.2 Revision on CT’s comments 10/7/03
3.3 Modified Section 3.1 based on CT’s Review of v3.2 10/20/03

Land Information System Software Design Document Version 3.3 10/20/03

ii

Table of Contents

TABLE OF CONTENTS ... II
LIST OF FIGURES ... III
LIST OF TABLES... III
ACRONYMS AND TERMS..IV
1 INTRODUCTION.. 1
1.1 PURPOSE AND GOALS ... 1
1.2 SCOPE... 1
2.0 LAND SURFACE MODELING AND DATA ASSIMILATION... 2
2.1 LIS DRIVER .. 2
2.2 COMMUNITY LAND MODEL (CLM) ... 3
2.3 THE COMMUNITY NOAH LAND SURFACE MODEL.. 4
2.4 VARIABLE INFILTRATION CAPACITY (VIC) MODEL... 4
3 LIS SOFTWARE ARCHITECTURE... 5
3.1 SOFTWARE DATA STRUCTURES... 7
4 HARDWARE PLATFORMS FOR LIS ... 11
4.1 LIS CLUSTER ARCHITECTURE... 11
4.2 SYSTEM MONITORING .. 12

4.2.1 Hardware monitoring data ... 12
4.2.2 Architecture and implementation .. 13

5 HIGH PERFORMANCE COMPUTING IN LIS... 14
5.1 PARALLEL PROCESSING IN LAND SURFACE MODELING.. 15
6 DATA MANAGEMENT IN LIS ... 20
6.1 DATA FLOW AND VOLUME IN LIS... 20
6.2 GRADS-DODS SERVER STRUCTURE ... 24
6.3 DESCRIPTION FOR DATA RETRIEVING COMPONENT... 25

6.3.1 Implementation... 26
7 INTEROPERABILITY AND COMMUNITY REQUIREMENTS... 26
7.1 INTERNAL INTEROPERABILITY... 26
7.2 EXTERNAL INTEROPERABILITY .. 26
8 USER INTERFACE DESIGN... 27
8.1 USER INTERFACE COMPONENTS.. 28
8.2 USER LEVELS ... 29
REFERENCES .. 32

Land Information System Software Design Document Version 3.3 10/20/03

iii

List of Figures

Figure 1: Current Land Data Assimilation System (LDAS) structure. It uses CLM and

Noah land models.. 6
Figure 2: Overview of LIS software architecture and its components designed for LIS

cluster. A subset of the components, the LDAS and parallel computing
implementation, will also be tested on SGI Origin platforms..................................... 7

Figure 3 : Structure of modules in the LIS driver ... 8
Figure 4: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes

and 192 compute nodes. Each IO node has dual Athlon CPUs, 2GB RAM and
Gigabit NICs, and each compute node has a single Athlon CPU , 512MB RAM and
a Fast Ethernet NIC. .. 11

Figure 5: LIS system monitoring and management architecture for the LIS Linux cluster.
This system will not be implemented on SGI since it is not under our control. 14

Figure 6: LIS land surface modeling flowchart .. 16
Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A

compute node does not communicate to other compute nodes. 18
Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of

a master node... 19
Figure 9: LIS global logical data flow on LIS Linux cluster. Physically, the IO nodes for

input data and output data on the two sides of the cluster are the same IO node
computers. On SGI, the flow is similar, except the IO nodes will be replaced by
local hard disks, and the compute nodes will be replaced by CPUs. GrADS-DODS
servers will not be used on SGI. Instead, the data will be pre-staged. 21

Figure 10: GrADS-DODS server architecture. ... 25
Figure 11 : Interfaces for Interoperability in LIS.. 28
Figure 12: LIS user interface architecture... 29
Figure 13: Screenshot of LIS web entry page. .. 30
Figure 14: Sample design of LIS User Interface (Level 3) ... 31

List of Tables

Table 1: Hardware monitoring and management data collection 13
Table 2: LIS global data files and volume estimation... 24
Table 3: Configurable GrADS-DODS parameters for access to level 2 users of LIS 31

Land Information System Software Design Document Version 3.3 10/20/03

iv

Acronyms and Terms

ALMA: Assistance for Land-surface Modeling Activities

API: Application Programming Interface

CGI: Common Gateway Interface

CLM: Community Land Model

DODS: Distributed Ocean Data System

ESMF: Earth System Modeling Framework

GrADS: Grid Analysis and Display System

LDAS: Land Data Assimilation System

LIS: Land Information System

MRTG: Multi Router Traffic Grapher

NFS: Network File System

Noah: National Centers for Environmental Prediction, Oregon State University, United
States Air Force, and Office of Hydrology Land Surface Model

PXE: Preboot Execution Environment

RAID: Redundant Array of Inexpensive Disks

SNMP: SIMPLE NETWORK MANAGEMENT PROTOCOL

VIC: Variable Infiltration Capacity Land Surface Model

Land Information System Software Design Document Version 3.3 10/20/03

1

1 Introduction

 This Software Design Document establishes the software design for the Land
Information System (LIS). LIS is a project to build a high-resolution, high-performance
land surface modeling and data assimilation system to support a wide range of land
surface research activities and applications.

 This document has been prepared in accordance with the requirements of the Task
Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01
Increasing Interoperability and Performance of Grand Challenge Applications in the
Earth, Space, Life, and Microgravity Sciences, funded by NASA’s ESTO Computational
Technologies (formerly High Performance Computing and Communications) Project.

1.1 Purpose and goals

 This document serves as the blueprint for the software development and
implementation of the Land Information System (LIS).

 The design goals of LIS are near real-time, high-resolution (up to 1km) global land data
simulation executed on highly parallel computing platforms, with well defined, standard-
conforming interfaces and data structures to interface and inter-operate with other Earth
system models, and with flexible and friendly web-based user interfaces.

1.2 Scope

 This document covers the design of all the LIS software components for the three-year
duration of the LIS project. The document focuses primarily on the implementation of
the LIS software on a general-purpose Linux cluster system, and most of the component
designs also apply to an SGI Origin 3000 system. This document does not cover design
for other hardware/software platforms.

 Specifically, this design covers the following aspects of LIS:

• Realistic land surface modeling. LIS will simulate the global land surface
variables using various land surface models, driven by atmospheric “forcing data”
(e.g., precipitation, radiation, wind speed, temperature, humidity) from various
sources.

• High performance computing. LIS will perform high-performance, parallel
computing for near real-time, high-resolution land surface modeling research and
operations.

• Efficient data management. The high-resolution land surface simulation will
produce a huge data throughput, and LIS will retrieve, store, interpolate, re-
project, sub-set, and backup the input and output data efficiently.

Land Information System Software Design Document Version 3.3 10/20/03

2

• Usability. LIS will provide intuitive web-based interfaces to users with varying
levels of access to LIS data and system resources, and enforce user security
policies.

• Interoperable and portable computing. LIS will incorporate the ALMA
(Assistance for Land surface Modeling Activities) and ESMF (Earth System
Modeling Framework) standards to facilitate inter-operation with other Earth
system models. In order to demonstrate portability of LIS, the land surface
modeling component will be implemented on a custom-designed Linux cluster
and an SGI Origin 3000.

2.0 Land Surface Modeling and Data Assimilation

 In general, land surface modeling seeks to predict the terrestrial water, energy and
biogeochemical processes by solving the governing equations of the soil-vegetation-
snowpack medium. Land surface data assimilation seeks to synthesize data and land
surface models to improve our ability to predict and understand these processes. The
ability to predict terrestrial water, energy and biogeochemical processes is critical for
applications in weather and climate prediction, agricultural forecasting, water resources
management, hazard mitigation and mobility assessment.

In order to predict water, energy and biogeochemical processes using (typically 1-D
vertical) partial differential equations, land surface models require three types of inputs:
1) initial conditions, which describe the initial state of land surface; 2) boundary
conditions, which describe both the upper (atmospheric) fluxes or states also known
as "forcings" and the lower (soil) fluxes or states; and 3) parameters, which are a function
of soil, vegetation, topography, etc., and are used to solve the governing equations.

The proposed LIS framework will include various components that facilitate global land
surface modeling within a data assimilation system framework. The main software
components of the system are:

• LIS driver: is a software system that is derived from the Land Data Assimilation
System (LDAS) that integrates the use of land surface models in a data
assimilation framework.

• Land surface Models: LIS will include 3 different land surface models, namely,
CLM, Noah, and VIC.

These components are explained in detail in the following sections.

2.1 LIS driver

The LIS driver that controls the execution of different land models is derived from
LDAS. LDAS is a model control and input/output system (consisting of a number of
subroutines, modules written in Fortran 90 source code) that drives multiple offline one-
dimensional land surface models (LSMs). The one-dimensional LSMs such as CLM and
Noah, which are subroutines of LDAS, apply the governing equations of the physical
processes of the soil-vegetation-snowpack medium. These land surface models aim to
characterize the transfer of mass, energy, and momentum between a vegetated surface
and the atmosphere. When there are multiple vegetation types inside a grid box, the grid

Land Information System Software Design Document Version 3.3 10/20/03

3

box is further divided into "tiles", with each tile representing a specific vegetation type
within the grid box, in order to simulate sub-grid scale variability.
 LDAS makes use of various satellite and ground based observation systems within a
land data assimilation framework to produce optimal output fields of land surface states
and fluxes. The LSM predictions are greatly improved through the use of a data
assimilation environment such as the one provided by LDAS. In addition to being forced
with real time output from numerical prediction models and satellite and radar
precipitation measurements, LDAS derives model parameters from existing topography,
vegetation and soil coverages. The model results are aggregated to various temporal and
spatial scales, e.g., 3 hourly, 0.25 deg x 0.25 deg. The LDAS driver was used in the
baselining results presented for Milestone E. The LIS driver used for demonstrating code
improvements for Milestone H was developed by adopting the core LDAS driver and
implementing code improvements for enhancing performance. The structure of LDAS
driver was also redesigned using object oriented principles, providing adaptable
interfaces for ease of code development and extensibility. Details of the LIS driver is
presented in the interoperability document and the code improvements are presented in
the code improvements documents for Milestone F. The LIS driver was modified to run
on the LIS cluster and to include the VIC code for Milestone I.

 The execution of LIS driver starts with reading in the user specifications. The user
selects the model domain and spatial resolution, the duration and timestep of the run, the
land surface model, the type of forcing from a list of model and observation based data
sources, the number of ``tiles” per grid square (described below), the soil
parameterization scheme, reading and writing of restart files, output specifications, and
the functioning of several other enhancements including elevation correction and data
assimilation.
 The system then reads the vegetation information and assigns subgrid tiles on which to
run the one-dimensional simulations. The LIS driver runs its 1-D land models on
vegetation-based "tiles" to simulate variability below the scale of the model grid squares.
A tile is not tied to a specific location within the grid square. Each tile represents the area
covered by a given vegetation type.

 Memory is dynamically allocated to the global variables, many of which exist within
Fortran 90 modules. The model parameters are read and computed next. The time loop
begins and forcing data is read, time/space interpolation is computed and modified as
necessary. Forcing data is used to specify boundary conditions to the land surface model.
The LSMs in the LIS driver are driven by atmospheric forcing data such as precipitation,
radiation, wind speed, temperature, humidity, etc., from various sources. The LIS driver
applies spatial interpolation to convert forcing data to the appropriate resolution required
by the model. Since the forcing data is read in at certain regular intervals, the LIS driver
also temporally interpolates time average or instantaneous data to that needed by the
model at the current timestep. The selected model is run for a vector of ``tiles'',
intermediate information is stored in modular arrays, and output and restart files are
written at the specified output interval.

2.2 Community Land Model (CLM)

Land Information System Software Design Document Version 3.3 10/20/03

4

 CLM (Community Land Model) is a 1-D land surface model, written in Fortran 90,
developed by a grass-roots collaboration of scientists who have an interest in making a
general land model available for public use. LIS currently uses CLM version 2.0. CLM
version 2.0 was released in May 2002. The source code for CLM 2.0 is freely available
from the National Center for Atmospheric Research (NCAR)
(http://www.cgd.ucar.edu/tss/clm/). The CLM is used as the land model for the
Community Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which
includes the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/).
CLM is executed with all forcing, parameters, dimensioning, output routines, and
coupling performed by an external driver of the user's design (in this case done by
LDAS). CLM requires pre-processed data such as the land surface type, soil and
vegetation parameters, model initialization, and atmospheric boundary conditions as
input. The model applies finite-difference spatial discretization methods and a fully
implicit time-integration scheme to numerically integrate the governing equations. The
model subroutines apply the governing equations of the physical processes of the soil-
vegetation-snowpack medium, including the surface energy balance equation, Richards'
(1931) equation for soil hydraulics, the diffusion equation for soil heat transfer, the
energy-mass balance equation for the snowpack, and the Collatz et al. (1991) formulation
for the conductance of canopy transpiration.

2.3 The Community Noah Land Surface Model

 The community Noah Land Surface Model is a stand-alone, uncoupled, 1-D column
model freely available at the National Centers for Environmental Prediction (NCEP;
ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/). The name is an acronym representing the
various developers of the model (N: NCEP; O: Oregon State University, Dept. of
Atmospheric Sciences; A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and
H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev -- OHD)). Noah
can be executed in either coupled or uncoupled mode. It has been coupled with the
operational NCEP mesoscale Eta model (Chen et al., 1997) and its companion Eta Data
Assimilation System (EDAS) (Rogers et al., 1996), and the NCEP Global Forecast
System (GFS) and its companion Global Data Assimilation System (GDAS). When
Noah is executed in uncoupled mode, near-surface atmospheric forcing data (e.g.,
precipitation, radiation, wind speed, temperature, humidity) is required as input. Noah
simulates soil moisture (both liquid and frozen), soil temperature, skin temperature,
snowpack depth, snowpack water equivalent, canopy water content, and the energy flux
and water flux terms of the surface energy balance and surface water balance. The model
applies finite-difference spatial discretization methods and a Crank-Nicholson time-
integration scheme to numerically integrate the governing equations of the physical
processes of the soil vegetation-snowpack medium, including the surface energy balance
equation, Richards’ (1931) equation for soil hydraulics, the diffusion equation for soil
heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis (1976)
equation for the conductance of canopy transpiration.

2.4 Variable Infiltration Capacity (VIC) Model

http://www.ccsm.ucar.edu/

Land Information System Software Design Document Version 3.3 10/20/03

5

Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model, written in
C, being developed at the University of Washington and Princeton University. The VIC
code repository along with the model description and source code documentation is
publicly available at http://hydrology.princeton.edu/research/lis/index.html. VIC is used
in macroscopic land use models such as SEA - BASINS
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed, grid-based
hydrological model, which parameterizes the dominant hydrometeorological processes
taking place at the land surface - atmospheric interface. The execution of VIC model
requires preprocessed data such as precipitation, temperature, meteorological forcing, soil
and vegetation parameters, etc. as input. The model uses three soil layers and one
vegetation layer with energy and moisture fluxes exchanged between the layers. The
VIC model represents surface and subsurface hydrologic processes on a spatially
distributed (grid cell) basis. Partitioning grid cell areas to different vegetation classes can
approximate sub-grid scale variation in vegetation characteristics. VIC models the
processes governing the flux and storage of water and heat in each cell-sized system of
vegetation and soil structure. The water balance portion of VIC is based on three
concepts:

1) Division of grid-cell into fraction sub-grid vegetation coverage.
2) The variable infiltration curve for rainfall/runoff partitioning at the land
surface.
3) A baseflow/deep soil moisture curve for lateral baseflow.

Water balance calculations are preformed at three soil layers and within a vegetation
canopy. An energy balance is calculated at the land surface. A full description of
algorithms in VIC can be found in the references listed at the VIC website.

3 LIS software architecture

This section describes the software architecture of the components of LIS. The proposed
LIS framework will have the following functional components: (1) A system for high
resolution global land data assimilation system, involving several land surface models,
and land data assimilation technologies. (2) A web-based user interface that accesses data
mining, numerical modeling and visualization tools. To facilitate these features, LIS will
integrate the use of various software systems such as LDAS, land surface models,
GrADS – DODS, etc. LIS is also expected to act as a framework that enables the land
surface modeling community to define new standards and also to assist in the definition
and demonstration of the ESMF. As a result, the design of LIS will also feature the
incorporation of new standards and specifications such as ALMA and ESMF.

Figure 1 shows the initial LDAS software architecture. As mentioned earlier, the
baselined version of LDAS includes CLM and Noah land surface models. VIC land
surface model will be incorporated in the Milestone I version of LDAS and LIS.

Figure 2 presents the LIS software architecture. It can be noticed that LIS will be built
upon the existing LDAS, with new components and expanded functionalities for the
support of parallel processing, GrADS-DODS server-based data management, ALMA

http://boto.ocean.washington.edu/seasia/intro.htm

Land Information System Software Design Document Version 3.3 10/20/03

6

and ESMF-compliance, web-based user interfaces, and system management of a Linux
cluster platform

The function of LIS dictates a highly modular system design and requires all the
modules, or components, to work together smoothly and reliably. Figure 2 shows an
overview of the LIS software architecture and its components, and their interactions. LIS
will continuously take in relevant atmospheric observational data, and will subsequently
use it to force the land surface models, and the land surface simulation is carried out in a
highly parallel fashion. Meanwhile the large amount of output data will be efficiently
managed to facilitate reliable and easy access. Moreover, LDAS, its interface to the three
land models (CLM, Noah, and VIC), and its input/output modules, will be compliant with
ESMF, while the output data variables and formats, and the variables passed between
LDAS and the three land models, will follow ALMA specification. Finally, LIS also has
software components to manage the parallel job processing and monitor hardware status
and manage them to ensure sustained high performance output and high availability in
the Linux cluster environment. Following is a list of LIS software components:

• Land surface modeling: LDAS and the three land models – CLM, Noah and VIC.
LDAS can be configured to run one, two or all the three land models at the same
time.

• Parallel processing: implementation of the parallelization scheme.
• GrADS-DODS server
• Data retrieving
• System monitoring: only applies to the LIS cluster environment.

By the use of modular programming and by conforming to well established standards
such as ALMA and ESMF, LIS is expected to provide a flexible, extensible framework to
land surface modelers and researchers. A more detailed discussion of the ESMF
interfaces is located in Section 4 of the Interface Design for Interoperability.

Raw data on the Internet

Data
retrieving

Input Output

LDAS

To atmospheric models

Input
data

Output
data

Single-
processor
platform

CLM NOAH

Figure 1: Current Land Data Assimilation System (LDAS) structure. It uses CLM and Noah land

models.

Land Information System Software Design Document Version 3.3 10/20/03

7

Figure 2: Overview of LIS software architecture and its components designed for LIS cluster. A

subset of the components, the LDAS and parallel computing implementation, will also be tested on
SGI Origin platforms.

3.1 Software data structures

This section describes the internal software data structures in LIS. As described earlier,
the main component that drives different LSMs is the LIS driver. The one-dimensional
land surface models such as CLM, Noah, and VIC are included as subroutines of the LIS
driver. The LIS driver, CLM, and Noah are written in Fortran 90, while the VIC model is
written in C. The LIS driver code is designed in a modular fashion, with a number of
modules used to encapsulate data as well as parameters that are used to solve different
governing equations. Please refer to the LIS code documentation
http://lis.gsfc.nasa.gov/source/ for a detailed description of the source code.

Figure 3 shows the organization of the main modules in the LIS driver.

Inheritance can be defined as the sharing of structure and behavior among classes in a
hierarchical relationship. Although F90 does not directly support inheritance, it can be
emulated using software constructs (ref: Decyk, V. K., Norton, C. D., and Szymanski, B.
K. "How to Express C++ concepts in Fortran 90".
http://exodus.physics.ucla.edu/Fortran95/ExpressC++.pdf)

For example, inheritance in LIS is simulated by lsm_module, which captures the behavior
of a land surface model. It also provides a hierarchical structure to all LSMs. The
"abstract" interfaces in lsm_module (encapsulating the main behavior associated with the
operation of a LSM) need to be implemented by all LSMs in LIS. As a standard for land
surface model parameters, input data, and output evolves, this structure is further
expected to allow code sharing among different LSMs, all of them using common

Land Information System Software Design Document Version 3.3 10/20/03

8

routines for initialization, setup, output etc. The interfaces in lsm_module are
implemented through a function table, which is implemented in C. The C language
provides the capabilities to store functions, table them, and pass them as arguments. The
function table implementation in C helps to resolve both F90 functions (CLM, Noah) and
C functions (VIC) dynamically at runtime, in the same manner. Data passed from the LIS
driver to the VIC model (written in C) is done from the F90 side through primitive data
types, which are converted to the appropriate data structures at the C end. For models
written in F90, there is no need for such a conversion.

A more detailed description of the design is presented in the interoperability design
document.

Figure 3 : Structure of modules in the LIS driver

Land Information System Software Design Document Version 3.3 10/20/03

9

A brief description of the modules are presented below:

LIS driver Modules

lisdrv: is the main program in LIS driver. It controls the overall execution, and delegates
tasks to the appropriated modules

ldasdrv_module: This module contains the driver routines that control program
execution, controlling of time, etc.

lsm_module: This module provides an abstraction of a land surface model, defining the
interfaces and subroutines that are required for the execution of an LSM. The interfaces
in this module need to be extended for incorporation of a new LSM into LIS.

baseforcing_module: Similar to lsm_module, this module captures the behavior
associated with introducing a new forcing scheme.

grid_module: This module is an abstract representation of a "grid" used in the LIS
driver. The module includes non model specific parameters such as lat/lon and
input/output forcing variables.

tile_module : This module is a representation of the "tile" described in section 2.1 that is
used to simulate sub-grid scale variability. This module includes specification of non-
model specific tile variables, such as lat/lon of tile, row/column of tile and properties
associated with a tile.

ldas_module : This module specifies the variables used in the LIS driver such as the
model domain specifications, type of land surface model used, type of forcing,
specification of source files, etc. It does not include specification of tile space or grid
space variables. This module is used by the main driver and subroutines that perform
non-model specific computations such as spatial/temporal interpolation.

obsradforcing_module: This module contains interfaces and subroutines that control
the incorporation of observed radiation forcing.

obsprecipforcing_module: This module contains the interfaces and subroutines that
control the incorporation of observed precipitation forcing.

spmdMod: This module contains MPI routines for initialization.

time_manager: This module contains variables and routines for the control of time.
time_manager provides methods that eventually call the ESMF time manager.

tile_spmdMod: This module contains routines for domain decomposition in tile space.

grid_spmdMod: This module contains routines for domain decomposition on the grid
domain.

Land Information System Software Design Document Version 3.3 10/20/03

10

def_ipMod: This module contains routines for calculating parameters required for spatial
interpolation

def_agr_ipMod: This module contains routines for calculating parameters required for
spatial interpolation for AGRMET radiation forcing data

def_cmap_ipMod : This module contains routines for calculating parameters required
for spatial interpolation for cmap precipitation forcing data

The LSMs included in the LIS driver implements the interfaces and routines defined in
lsm_module. Currently the LIS driver includes Noah, CLM, and VIC models. The main
modules in these models are described below.

CLM specific modules

The modules in CLM specify runtime control variables, definition of parameters, and
variables associated with model behavior.

clmtype: This module contains the definition of variables associated with CLM.
clm_varcon: Defines the constants associated with CLM model execution.
clm_varctl : Defines the run control variables associated with CLM model execution.
clm_varpar: Defines land model array dimensions.
atmdrvMod: Defines the transfer of forcing onto clm variables.
histHandlerMod: Handles history, files used for restart.

Noah specific modules

Noah includes a number of modules that encapsulate model driver options, specification
of forcing input, and parameters.

noah_module : This module specifies one-dimensional Noah land driver variable
specification. It includes Noah state parameters, output variables, etc.
noah_atmdrv: This module specifies the routines for transfer of forcing from the LIS
driver to Noah variables.

VIC structures

VIC includes a number of structures that are used to encapsulate model options, forcing
parameters, global simulation parameters, soil and vegetation parameters, etc. The main
structures are:

option_struct : This structure is used to store model options.
global_param_struct : This structure is used to store the global parameters defined for
the current simulation.
soil_con_struct : This structure is used to store the constant variables for the soil in the
current grid cell.
veg_con_struct : This structure is used to store all constant parameters for the vegetation
types in the current grid cell.

Land Information System Software Design Document Version 3.3 10/20/03

11

atmos_data_struct : This structure is used to store the meterological forcing data for
each time step.
cell_data_struct : This structure is used to store the grid cell specific variables, not
included in the vegetation structures.
energy_bal_struct : This structure is used to store all variables used to compute the
energy balance and soil thermal fluxes.
snow_data_struct: This structure is used to store all variables used by the snow
accumulation and ablation algorithm, and the snow interception algorithm.

4 Hardware Platforms for LIS

This section describes the hardware operational platforms intended for LIS. The SGI
Origin 3000 will be used to implement and demonstrate only the high resolution, parallel,
global land surface modeling and data assimilation components (LDAS/CLM/Noah/VIC)
of LIS. The fully operational LIS (with user interfaces and visualization components such
as GrADS - DODS) will be demonstrated on a custom designed Linux cluster. The
following section describes the hardware design of the cluster.

4.1 LIS cluster architecture

Internet

Gigabit Ethernet

24
 c

om
pu

tin
g

no
de

s

24-port 10/100 switches
with gigabit uplink

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Internet

IO Node 0 IO Node 1 IO Node 2 IO Node 3 IO Node 4 IO Node 5 IO Node 6 IO Node 7

Figure 4: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes and 192
compute nodes. Each IO node has dual Athlon CPUs, 2GB RAM and Gigabit NICs, and each
compute node has a single Athlon CPU , 512MB RAM and a Fast Ethernet NIC.

Land Information System Software Design Document Version 3.3 10/20/03

12

 Figure 4 shows the physical architecture of the LIS Linux cluster. The cluster consists of
192 computing nodes. The cluster also includes 8 IO (input – output) nodes, specifically
to handle the huge data management requirements. These nodes are interconnected with 8
Ethernet switches.

 The 192 computing nodes are divided into 8 sub-clusters, with 24 nodes in each sub-
cluster, interconnected with fast Ethernet via one of the 8 24-port fast Ethernet switches.
Each switch also has two gigabit ports to connect the 8 IO nodes and the other switches.

 The use of 8 sub-clusters and 8 IO nodes is mainly for the segregation of network
traffic resulting from non-local file IO operations, and for the spreading of data storage so
each IO node does not have to deal with single big files. So in average each IO node will
only need to serve the IO requests of 24 computing nodes, and only store 1/8 of the
output information, which makes the output volume manageable.

4.2 System Monitoring

The system monitoring component is responsible for monitoring, maintaining and
administering the LIS system on the Linux cluster to ensure its reliable operation and
optimal performance output.

We categorize the system management function into four levels: hardware level,
interconnect level, operating system level and application software level. For the SGI
Origin 3000 platform, we are not involved in the management of the hardware and
interconnect levels. But for the Linux cluster, the hardware and interconnect level
management is our responsibility and is critical to the overall stability and performance
of the LIS system.

The hardware level system management involves power-up and shutdown of the nodes,
booting strategy and hardware status monitoring. Interconnect level management requires
the monitoring of the link status of the network nodes, bandwidth usage and traffic
statistics. Operating system level management takes care of system resource usages, such
as CPU, memory and disk space usage. Application level management oversees the
progress of the LIS jobs, configures different runs, analyze performance bottlenecks, and
obtain performance profiles for fine-tuning. Dynamic error and diagnostic logs will be
maintained for LDAS and the land surface models during the operation of LIS. The
diagnostic logs will be available to the end users.

4.2.1 Hardware monitoring data

The following table summarizes the system data of various levels the management
subsystem is designed to collect and analyze.

Land Information System Software Design Document Version 3.3 10/20/03

13

Table 1: Hardware monitoring and management data collection

Category Data Items Update frequency
Overall cpu/mem of each process 1min

Overall progress of whole job 2min

Progress of each process 1min
Timing of each module sampled, off-line
Memory usage of each module sampled, off-line
Total memory usage & biggest user 2min
Total CPU usage & biggest user 2min
Total disk space usage 2min
System up-time and running procs 2min
Bandwidth usage of each node 2min
Bandwidth usage of switches 2min
Latency measurements 2min
Packet drops measurements 2min
Fan speeds 10min
Chasis temperature 10min
Power supplies voltage 10min

LIS Cluster System Monitoring and Management Data

Operating system level

Interconnect level

Hardware level

Application level

4.2.2 Architecture and implementation

The variety of system variables and management duties requires us to design a
management system with modules performing individual and well-defined tasks. Figure 5
shows the structured design of the system management functionalities for the Linux
cluster platform. We will not implement such a system on SGI because the SGI platform
is not under our management control.

On the hardware level, we will design scripts to take advantage of the “Wake-on-Lan”
technology for powering up the nodes smoothly in a well-defined pattern. The nodes will
be able to boot across the network with the PXE technology, as well as from the local
disk, to centralize system software management. After booting, each node’s hardware
parameters, such as CPU temperature, cooling fan speeds and power supply voltages, will
be collected by kernel modules called “lm-sensors”, and sent to the central management
station with web-based display with automatic updates.

On the interconnect level, we will use SNMP protocol as the underlying data collection
and management mechanism, interfaced with MRTG for web-based display of network
statistics. Additional network data can also be collected by Big Brother system and
network monitor, also with web output.

Land Information System Software Design Document Version 3.3 10/20/03

14

On the operating system level, we will use SNMP and various OS shell commands and
utilities to collect system data, and use MRTG and Big Brother as the interface.

On the application level, we will develop CGI scripts, interfaced with OS commands and
utilities, to provide a web-interface for the monitoring and control of LIS jobs and
processes. Standard performance profiling and debugging tools will be used off-line to
analyze sample runs for trouble-shooting and performance fine-tuning.

OS resource
management

Interconnect
management

Hardware
management

Application
management

Monitoring and
management stations

Wake-on-Lan

LM78/80

SNMP

OS commands

Profiling tools

LIS hardware/software
system

OS commands

SNMP

PXE

Figure 5: LIS system monitoring and management architecture for the LIS Linux cluster. This

system will not be implemented on SGI since it is not under our control.

5 High performance computing in LIS

Accurate initialization of the land surface moisture, carbon, and energy stores in a fully
coupled climate system is critical for meteorological and hydrological prediction.
Information about land surface processes is also of critical importance to real-world
applications such as agricultural production, water resource management, flood
prediction, water supply, etc. The development of LDAS has been motivated by the need
for a system that facilitates land surface modeling with an assimilation system to
incorporate model derived and remotely sensed data. LDAS system has been successfully
used in simulations for North America at 1/8 degree resolution in both real time and long
term (50 years) retrospective simulations. However, to truly address the land surface
initialization and climate prediction problem, LDAS needs to be implemented globally at
high resolution (1km). The computational and resource requirements increase
significantly for global modeling at such high resolutions. The proposed LIS system will
aim to make use of scalable computing technologies to meet the challenges posed by the
global, high-resolution land surface modeling.

Land Information System Software Design Document Version 3.3 10/20/03

15

5.1 Parallel processing in land surface modeling

Parallel computing is a powerful programming paradigm to deal with computationally
intractable problems. The notion behind parallel programs is to divide the tasks at hand
into a number of subtasks and solve them simultaneously using different processors. As a
result, a parallel system can improve the performance of the code considerably.

The land surface modeling component in LIS is designed to perform high-performance,
parallel simulation of global, regional or local land surface processes with initially three
land surface models: the CLM model, the Noah model and the VIC model. Specifically,
the land surface modeling component will interact with the data management components
to obtain properly formatted input forcing data, and pass the forcing data, along with
other static parameters, to the three land surface models through the LIS driver. Each of
the land surface models carries out the simulation on a distributed, parallel hardware
platform, either a Linux cluster or a SGI Origin 3000. The results are passed to the output
component, which interacts with the data management subsystem to handle the output
data.

As shown in Figure 6, and described in detail in the land surface model documentation,
land surface models proceed in a manner similar to other physical models. Modeling
proceeds given prior knowledge of the spatial and temporal domains of the simulation, in
addition to initial conditions and parameters required to solve the equations of water and
energy conservation within that domain. Modeling proceeds according to increments of
time (“time steps”, typically 15 minutes), until the ending time is reached and data is
written out for future runs and analysis.

 The land surface modeling subsystem is designed to be running in parallel, both on a
Linux cluster with 200 nodes, and on a SGI Origin 3000 platform with 512 processors.
Although the hardware architecture differs greatly between the distributed-memory Linux
cluster and the shared-memory SGI Origin 3000, our implementation of the land surface
modeling programs will make this architectural difference fairly transparent: On the
Linux cluster, each node will run a copy of the land surface modeling process; on the SGI
Origin, each CPU will run a copy. Thus we establish a direct correspondence between a
node in the Linux cluster and a CPU in the Origin 3000.

Land surface processes have rather weak horizontal coupling on short time and large
space scales, which enables highly efficient scaling across massively parallel
computational resources. LIS aims to take advantage of this weak horizontal coupling of
land surface processes by using a coarse-grained parallelization scheme, which does not
require communication between the compute nodes. This design fits well with the
distributed memory nature of the Linux cluster architecture.

Land Information System Software Design Document Version 3.3 10/20/03

16

Set up model
parameters

Read restart files

Initialize output
arrays and analysis

Get base,
precipitation, and
radiation forcing

LSM
 starts

Get configuration

Finish all
tiles?

Apply elevation
correction to forcing

Transfer forcing into
model tiles

Read model specific
data: LAI, albebo

Call CLM/NOAH/VIC

Write output

 Write daily restarts

Return surface
fields to atmos mdls

No

Yes

End time reached
No

Yes

LIS driver starts

Modeling ends

Apply spatial and
temporal

interpolation

Figure 6: LIS land surface modeling flowchart

 The parallelization scheme employed in the land surface modeling component in LIS is
based on a master slave paradigm, where a master processor performs the initializations,
and domain decomposition. The compute nodes perform computations on the
decomposed domain. The master processor carries out the global output routines once the

Land Information System Software Design Document Version 3.3 10/20/03

17

compute nodes finish their tasks. The parallel processing component plays a critical role
to connect the land surface modeling job to the underlying multi-processor parallel
computing hardware platform, in our case, a Linux cluster or an SGI Origin 3000, to
achieve the goal of near real-time processing of high-resolution land surface data.

 We estimate that at 1km resolution LIS will deal with ~50,000 times more grid points
than the 2ºx2.5º resolution. The baselining report from Milestone E estimates that the
memory requirements at 1km is in the order of terabytes, which is unmanageable either
on the Linux cluster or on the shared memory SGI platforms. The code improvements
and redesigns conducted for Milestone F significantly reduced these memory
requirements. However, the projected memory requirements from the improved LIS code
from Milestone F still estimates approximately 500GB for 1km execution. This makes
the simple paradigm, where the master handles the global initializations, intractable. To
avoid the bottleneck from this scheme, we plan to redesign the input data flow taking
advantage of the GrADS-DODS (GDS) servers’ features. GDS provides capabilities for a
client to dynamically retrieve subsets of data on a global domain. A GDS Server on a
master node will perform the tasks of serving data to the compute nodes. The domain
decomposition can be achieved by the compute nodes making requests for data on the
domain they are performing the computation, instead of a master processor distributing
data to them.

To satisfy the requirements of real-time operation, the job, which includes a grid
representation of the global land surface, must be split into smaller pieces and run in
parallel. We plan to divide the global surface into 10,000 small land pieces, and with 1km
resolution, each piece would require about 5 times as many computations as the 2ºx2.5º
LDAS, and will take a single computing node about 200MB memory to run, and 10
minutes to finish a 1-day simulation, based on the initial performance baselining of
LDAS running at both 2ºx2.5º and 0.25ºx0.25º resolutions. The Linux cluster can
consume approximately 200 pieces per round, and under ideal conditions, it will take the
whole cluster about 50 rounds to finish the whole job. This will take 500 minutes, or
about 9 hours, to finish a 1-day simulation of the whole global land surface, which
satisfies the real-time requirement with enough extra room. We expect that the timings on
the SGI Origin will be comparable to those on the cluster, although memory and disk
limitations, some imposed by the queue structure, will likely prohibit effective use of that
system for demonstrating LIS in a near-real-time mode. However, we plan to
demonstrate the LIS on the SGI Origin system as proof-of-concept.

Land Information System Software Design Document Version 3.3 10/20/03

18

Node k gets
land piece k

Node k computes
land piece k

Node k finishes
land piece k

Node k notifies
IO nodes and sends

data

Compute node k
starts

Node k requests
a land piece

Request
granted?

Run
finished

Yes

No

Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A compute

node does not communicate to other compute nodes.

 A compute node’s job is to run a copy of the land surface modeling subsystem in
its process space, compute a piece of land surface obtained from the IO node, and request
another piece of land surface from the IO node as soon as it finishes the current piece,
until the IO node refuses to give it any pieces, in which case there are no more land
pieces are available and the compute node’s job is done. Figure 7 shows the flow chart of
the compute node’s job handling process.

Land Information System Software Design Document Version 3.3 10/20/03

19

Job starts

Divide globe into N
land pieces, put in

unfinished pool

Grant node k land
piece n

Any node
requests?

Start timer k

No

No

No

Yes, timer k
expired

Yes, node k requested

Yes, node k
reported

Any land
pieces left?

Run
finished

No

Any node reports
finished job?

Any timer
expired?

Reset timer k
remove land piece n

from the pool

Assume node k
crashed, return

piece n to the pool

Yes

Keep track of the
3 pools

n n

n n

n n

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of a master

node.

 We propose to use a modified version of the “pool of tasks” scheme for the parallel
processing of the land pieces. A pool of tasks paradigm is equivalent to a master – slave
programming notion, where a single processor will act as a master node and distribute
jobs to the slave (compute) nodes. In the LIS “pool of tasks” design, one of the IO nodes
will act as a master node and another IO node will be designated as a backup to it.
The master node will keep three tables on hand when starting the job: table of unfinished-
jobs, finished-jobs, and jobs-fetched. At the beginning, the 10,000 land pieces are listed
in the "unfinished" table, and each compute node comes to the master to fetch a piece
from it, and starts working on it. The master node then moves the fetched jobs to the
"jobs-fetched" table, and starts a timer for each fetched job. The timer specification will
be based on the existing knowledge of a single execution of a land surface model. When
a compute node finishes a job and notifies the master node before the job’s corresponding
timer runs out, this piece is regarded a finished job, and the master node moves it from
the "fetched" table to the "finished" table. And the compute node goes on to fetch another
job until the "unfinished" table is empty. If a fetched job's timer runs out before the
compute node reports back, the master node then assumes that that particular compute
node must have crashed, and then moves that timed-out job from the "fetched" table back

Land Information System Software Design Document Version 3.3 10/20/03

20

to the "unfinished" table for other compute nodes to fetch. Figure 8 shows the flowchart
(left) of the master node’s job handling and scheduling process, and the various status of
the three tables (right) the master node uses to keep track of the job progress at different
corresponding stages in the flowchart.

To maximize throughput of the system in a parallel environment, load balancing is
required to keep the compute nodes busy by efficiently distributing the workload. The
use of a "pool of tasks" is effective in achieving automatic load balancing by minimizing
the idle times of compute nodes, since the nodes that finish their computations will
request more tasks than the ones that require more time for their computations. This
automatic, asynchronous scheduling help in keeping the compute nodes busy without
having to wait for other node's computations.

As shown in Figure 8, as the land surface modeling process starts, the master node
divides the globe into a number of smaller pieces. The inputs required by the land surface
models, namely, initial conditions, boundary conditions, and parameters will be provided
to the compute nodes before the land surface model run begins. The modeling process
can be a fresh initialization (cold start) or a restart from a previously finished run. This
process also requires preprocessing of the data such as time/space interpolation. The
output from each compute node, after the computation, will be reassembled at the IO
nodes.

6 Data Management in LIS

The data management subsystem in LIS is composed of the following functions: input
data retrieval from the Internet, data pre-processing and post-processing, data
interpolation and sub-setting, output data aggregation, storage, backup and retrieval. It
links the other subsystem together, and ensures smooth end-to-end data flow, from the
input raw data all the way to the output data satisfying LIS users’ various requests. The
following sections describe the data flow and volume used in LIS operation, the use of
GrADS-DODS server for data management, visualization, the Live Access Server (LAS)
server for visualization, etc., and other functions such as data retrieval.

6.1 Data flow and volume in LIS

 Figure 9 shows the global logical data flow of LIS system on the LIS cluster platform.
On SGI Origin platform, the IO nodes in Figure 3 will be replaced by local disks for the
IO functions, and the compute nodes are replaced with the same number of CPUs. Input
data will be pre-staged on SGI instead of using GrADS-DODS servers.

 LIS will deal with three categories of global data: parameter data, input forcing data
and output data. At the top level of the system design, the global data are represented by
data files of various formats.

Land Information System Software Design Document Version 3.3 10/20/03

21

GrADS-
DODS
Server

GrADS-
DODS
Server

GrADS-
DODS
Server

GrADS-
DODS
Server

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Forcing Data
(GDAS/GEOS/AGRMET/NRL)

GrADS-
DODS
Server

Data
Pre-processor

Data
Retriever

Internet Users

 Forcing data

 Output data

Parameter data

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

Figure 9: LIS global logical data flow on LIS Linux cluster. Physically, the IO nodes for input data
and output data on the two sides of the cluster are the same IO node computers. On SGI, the flow is

similar, except the IO nodes will be replaced by local hard disks, and the compute nodes will be
replaced by CPUs. GrADS-DODS servers will not be used on SGI. Instead, the data will be pre-

staged.

 The parameter data include the vegetation classification, land mask, etc., with a size of
about 136 GB. Since these data will not be updated frequently, we will put a copy of
these data on each compute node's local disk to reduce network traffic. Currently the bulk
of the data are saved as ASCII data, and we will convert the data into binary format to
allow all the static data to fit on the node's 80 GB disk.

 The forcing data, fetched from various locations on the Internet, needs to be fed to the
compute nodes at regular intervals. The total traffic is estimated to be 279 MB/day, which
is not significant compared to the output data traffic. We designate one of the IO nodes to
fetch and pre-process the data, then send a copy of the forcing data to the other IO nodes
via NFS system. When a compute node needs the forcing data, it will contact the IO
node, which corresponds to the sub-cluster it belongs to without bothering other IO
nodes. To further reduce the IO network traffic, each IO node will run the GrADS-DODS
server to feed the compute nodes with the sub-set of the data they need.

 The output data will be stored on the IO nodes too, and served to users via a GrADS-
DODS server running on one of the IO nodes. Since it is not feasible to store the output
in a single file (200 GB/day), we want to distribute the data across all the IO nodes. To
keep the huge output data volume manageable, we designed a storage scheme that will

Land Information System Software Design Document Version 3.3 10/20/03

22

distribute the land surface variables in the output data across the IO nodes. Since there are
40-48 variables in the output data, with some of them having multiple levels, we can let
each IO node to store the global data of only 6 or so of the output variables. So on
average, the I/O traffic is segregated and each IO node is only taking 1/8 of the total data
traffic, and the subsequent operations by the GrADS-DODS servers are greatly
simplified.

Table 2 lists all the global data files and specifications. As described in Section 2, these
files specify the parameters, initial and boundary conditions required for the land surface
model runs. For e.g, the forcing data translates to variables such as total precipitation,
convective precipitation, downward shortwave and longwave radiation, near surface air
temperature, near surface specific humidity, near surface U, V, winds and surface
pressure. In addition to these files, the user also specifies parameters such as the spatial
and temporal resolution, the land surface model, etc. LDAS also allows the user to
initialize state variables, either by specifying a global uniform value or taken from a
restart file produced by a prior run. Please refer to the LDAS source code documentation
on the LIS web site (http://lis.gsfc.nasa.gov/documentation/source/) for a detailed
description of the input/output routines corresponding to each file. The output from the
land models translates to variables such as soil moisture, surface runoffs, canopy
transpiration, etc.

Land Information System Software Design Document Version 3.3 10/20/03

23

Dataset Description Desired
resolution

Native
format

Approx
size

Update
frequency

GDAS forcing data

The Global Data Assimilation System (GDAS) is the
global, operational weather forecast model of
NCEP(Derber et al 1991). LDAS makes use of GDAS 0,
0.3, and, as needed, 6 (hour) forecasts, which are
produced at 6 hour intervals

Native T170,
~0.7deg GRIB

50M/day
(3.2M X 4

X4)
Every 6 hours

GEOS forcing data

Obtained from GSFC’s Goddard Earth Observing
System Data Assimilation System (GEOS) (Pfaendtner
et al. 1995) version 4.3 that supports level-4 product
generation for the NASA Terra satellite (Atlas and
Lucchesi 2000).

1 deg Binary 25M/day Every 3 hours

AGRMET SW flux data Binary 48M/day Every 1 hour

AGRMET LW flux data Binary 144M/day Every 1 hour

CMAP Precipitation

This data set consists of monthly averaged precipitation
rate values (mm/day) for the time period Jan 1979-Dec
2001. The data is 2.5x2.5 gridded (144x72) and covers
88.75N to 88.75S and 0E to 357.5 E (eastward). The
data range is approximately 0 to 70mm/day. The
standard (without NCEP/NCAR Reanalysis data) version
has some missing values.

2.5X2.5 NETCDF 9.5M/month Every 5 days

Total data input flux 267M/day

~48km

LDAS estimates global, downward shortwave and
longwave radiation fluxes using a procedure from the Air
Force Weather Agency’s (AFWA) Agricultural
Meteorology modeling system (AGRMET). It utilizes the
AFWA Real Time Nephanalysis (RTNEPH) 3-hourly
cloud maps (Hamill et al. 1992), and the AFWA daily
snow depth (SNODEP) maps (Kopp and Kiess 1996) to
calculate surface downwelling shortwave radiation using
the algorithms of Shapiro (1987)

Land Information System Software Design Document Version 3.3 10/20/03

24

Dataset Description Desired
resolution

Native
format

Approx
size

Update
frequency

UMD Vegetation
classification map

This file lists the frequency with which of each of the 14
vegetation types occurs in each of the 0.25 degree LDAS
grid boxes. See
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml
for a detailed description.

1km X 1km ASCII 65G Static

UMD Land mask

This ascii file contains the LDAS unified land/sea
mask.See
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml
for a detailed description.

1km X 1km ASCII 18G Static

Soil classification map 1km X 1km ASCII 20G Static

Soil color map 1km X 1km Binary 2G Static

Sand fraction file 1km X 1km Binary 6G Static

Clay fraction map 1km X 1km Binary 6G Static

Leaf area index (LAI) 1km X 1km Binary 1M Static

AVHRR-derived LAI
climatology 1km X 1km Binary 5G Static

Slope
Derived from GTOPO32 DEM data. GTOPO30 is a
global digital elevation model (DEM) with a horizontal
grid spacing of 30 arc seconds (approximately 1
kilometer). GTOPO30 was derived from several raster
and vector sources of topographic information by USGS.

1km X 1km Binary 2G Static

Static file size 138G

The soil parameter maps used in LDAS were derived
from the global soils dataset of Reynolds et al. (1999).
That dataset includes the percentages of sand, silt, and
clay, among other fields, and is based on the United
Nations Food and Agriculture Organization (FAO) Soil
Map of the World linked to a global database of over
1300 soil pedons. The LDAS soil color map was
interpolated from a 2 x 2.5 degree global map produced
by NCAR0.01.bin

This was generated using three information sources: (1)
an 8km resolution time series of LAI, which was derived
by scientists at Boston University (Myneni et al. 1997)
from AVHRR measurements of normalized difference
Avegetation index (NDVI) and other satellite
observations.(2) A climatology based on the 8km time
series and (3) the 1km UMD vegetation type
classification.

Dataset Description Desired
resolution

Native
format Approx size Update

frequency
 1km X 1km 200G/day

 5km X 5km 8G/day

 1/8 X 1/8 deg 0.9G/day

 1/4 X 1/4 deg 0.2G/day

Total data output flux 210G/day

CLM output data

Binary
with

optional
GRIB

every hourLIS output data of ~37 variables

Table 2: LIS global data files and volume estimation.

6.2 GrADS-DODS server structure

Land Information System Software Design Document Version 3.3 10/20/03

25

 GrADS-DODS servers will be employed both to serve the input data to the land
surface computing code, and to serve the output to the Internet users. Figure 10 shows the
architecture of the GrADS-DODS server. A GrADS-DODS server uses a typical client-
server architecture to communicate with the DODS clients. The communication protocol
between a client and a server is HTTP. A GrADS-DODS server has the following
components: Java servlets contained in the Tomcat servlet container, to handle the client
requests and server replies via HTTP protocol; DODS server APIs, to parse the DODS
requests and package output data; interface code, to translate the DODS requests into
GrADS calls; and finally, GrADS running in batch mode, to actually process the requests,
and perform data-retrieving, sub-setting and processing on the server side.

The LAS Server provides an additional web interface for users to search a data catalog, to
visualize data interactively, and to download the data in various formats. LAS uses perl
scripts to retrieve the metadata from the LIS output files, and save the metadata in a SQL
database system, MySQL. The LAS server and its accompanying database, MySQL, will
be running on the same LIS cluster node.

G rA D S
b a tc h m o d e

D a ta s e ts in G rA D S -
s u p p o r te d fo rm a t: b in a ry ,
G R IB , N e tC D F , H D F , e tc .

In te r fa c e
c o d e

D O D S
s e rv e r A P I

J a v a s e rv le t

T o m c a t

G
rA

D
S

-D
O

D
S

 s
er

ve
r

D O D S c lie n t

C lie n t re q u e s ts S e rv e r re s p o n s e d a ta

Figure 10: GrADS-DODS server architecture.

6.3 Description for data retrieving component

 The data retrieving component locates and downloads various atmospheric forcing
data sets, as specified in Table 1, at regular intervals, from the Internet to LIS’s local
disks. The data retrieving component will also perform some basic pre-processing on the
forcing data.

Land Information System Software Design Document Version 3.3 10/20/03

26

6.3.1 Implementation
 Additional information on the data management can be found in the Data Management
Design for the Land Information System document found at the LIS web site
http://lis.gsfc.nasa.gov/documentation.

7 Interoperability and Community Requirements

Interoperability means the ability of a system to use parts of another system and also
provide parts of itself that can be used by other systems to ease the cost of development
and foster better interaction between different research groups. Code interoperability is
important not only between components within an application, but also between different
applications. LIS defines two different types of interoperability: internal and external.
Internal interoperability mainly deals with the aspects of making components within LIS
interoperable and the external interoperability deals with the interaction of LIS with other
related scientific community applications and standards.

7.1 Internal Interoperability

 Interoperability within the LIS will allow for the addition of improved sources of input
data and land surface models as they become available. As currently designed, the LIS
has three land surface models available for use. The LIS community has identified a
number of other land surface models that would be scientifically beneficial. Likewise
with the input data, additional sources of input data would be scientifically beneficial if
they were available in LIS.

Interoperability within the LIS system is achieved by reorganizing the LIS driver to
organize the code and module control into a framework by designing flexible and
adaptive interfaces between subsystems. The LIS driver makes use of the advanced
features of the Fortran 90 programming language, which are especially useful for object-
oriented programming. The design uses object-oriented principles to provide a number
of well-defined interfaces or "hook points" for adding additional land surface models and
input data sets. These interfaces are implemented by using a number of virtual function
tables and the actual delegation of the calls at runtime is done at runtime by resolving the
function names from the table. C language allows the capabilities to store functions, table
them, and pass them as arguments. F90 allows passing of functions as arguments. By
combining both these languages, LIS uses a complete set of operations with function
pointers. The LIS driver will provide the land surface modeling community an avenue to
easily add additional models or input data through the use of such an extensible system.
A more detailed description can be found in Section 3 of the Interface Design for
Interoperability for the Land Information System on the LIS web site.

7.2 External Interoperability

Land Information System Software Design Document Version 3.3 10/20/03

27

The LIS design also needs to be interoperable with frameworks outside of LIS so that the
outputs from LIS can be useful to weather and climate models. External
interoperability is achieved by adopting the ALMA data exchange convention and by
being a fully compliant component of the ESMF. By following the ALMA standard, the
LIS land surface modeling system is guaranteed to exchange data with other land surface
modeling systems that are also ALMA-compliant.

ESMF compliance will allow us to interact with other Earth system models, such as
atmospheric models or climate models with compliant interfaces. ESMF is intended to
provide a structured collection of building blocks that can be customized to develop
model components. ESMF can be broadly viewed as consisting of an infrastructure of
utilities and data structures for building model components and a superstructure for
coupling and running them. ESMF provides a utility layer that presents a uniform
interface for common system functions. LIS plans to use ESMF time management utility
that provides useful functions for time and data calculations, and higher level functions
that control model time stepping and alarms. ESMF also defines a number of guidelines
for applications that are intended to be coupled. For gridded components, ESMF is
expected to provide standard methods for components to be initialized in parallel
configurations and destroyed. LIS will also aim at implementing these interfaces so that
LIS can be coupled with other earth system model through ESMF as well as with the
utilities provided for gridded components.

Figure 11 shows the structure of both internal and external interfaces in LIS. The input
and output data in LIS will conform to ALMA data exchange standards. The LIS driver
will provide a structured set of interfaces for incorporation of new LSMs. Further, the
LIS driver will provide an ESMF complaint interface and use the ESMF_State to
exchange information with other ESMF compliant systems. A more detailed description
of interoperability design issues can be found in the Interface Design for Interoperability
for the Land Information System at the LIS web site.

8 User interface design

The user interface in LIS is an important component of LIS that will allow the interactive,
flexible, use of the LIS hardware and software to users. The LIS user interface is intended
to be web-based, and designed to allow for cascading complexity depending on the level
of user’s need to control the system. The following sections present various facets of the
user interface design of LIS.

Land Information System Software Design Document Version 3.3 10/20/03

28

Figure 11 : Interfaces for Interoperability in LIS

8.1 User interface components

The user interface subsystem takes a typical multi-tier client-server system architecture.
On the client side, a user has three types of client programs to use as the front-end: a web
browser, an ftp client program (which can be integrated in a web browser), or a DODS
client program. On the server side, a general purpose web server will be used to serve
clients with a web browser, and a GrADS-DODS server will be deployed to serve DODS
clients, and a FTP server to server ftp clients. Besides these components, CGI scripts and
CGI-GrADS gateway scripts will be used as the middleware to perform dynamic
processing based on users’ interactive requests sent through web browsers. Figure 12
shows the user interface architecture design.

http://www.ccsm.ucar.edu/
http://www.ccsm.ucar.edu/

Land Information System Software Design Document Version 3.3 10/20/03

29

Figure 12: LIS user interface architecture.

.

Additional information on the User Interface Design for the Land Information System
can be found at the LIS web site http://lis.gsfc.nasa.gov/documentation/.

8.2 User Levels
 Outside users accessing the LIS are categorized into three levels, associated with
different levels of data access and security requirements.

 Level 1 users are the general public, who will access the LIS data primarily through a
standard web browser. Information provided to this class includes static images and text,
and some limited interactive content such as GIF/JPG/PNG images generated on the fly
in response to users' regulated web input. The static content, most of which is static html
pages, is served via the web server, while the interactive content is generated via a three-
tier architecture with server-side GrADS as the image engine and below it the GrADS-
DODS server as the data engine to feed the server-side GrADS. This group of users does
not have direct access to the data or LIS scientific computing power system, and their
usage of system resources is very limited. Therefore, for this class of users we do not
enforce any additional authentication or authorization procedures. It is also our intention
to facilitate easy access to the data for education and outreach purposes. Figure 13 is a
screenshot of the LIS entry page.

Land Information System Software Design Document Version 3.3 10/20/03

30

Figure 13: Screenshot of LIS web entry page.

Level 2 users have direct access to LIS data, either through our GrADS-DODS server by
using a DODS client, or directly through ftp fetches. The GrADS-DODS server provides
the users with the ability and flexibility to get only a sub-set of the data they need. To be
authorized as Level 2 users, they will have to register with us first by filling out web
forms, and they will be authenticated using name and password before accessing the data.
The GrADS-DODS server will impose a limit on system resource usages. The GrADS-
DODS server allows the system administrator to limit the system usage by configuring
the following parameters for each authorized address:

Level 3 users will have access to the parellel computing power of the LIS system,
including an account on the LIS cluster and a web interface for submitting LIS jobs, as
shown in Figure 14. The configuration parameters entered into the web form will be
converted to LIS configuration files to control model runs. A LIS configuration file is
submitted to the LIS scheduler which runs the job and places the output in a user-unique
output directory in proper format for visualization. All the parameters will have default
values.

Land Information System Software Design Document Version 3.3 10/20/03

31

Table 3: Configurable GrADS-DODS parameters for access to level 2 users of LIS

Parameter Description
Subset limit Sets the maximum size in megabytes of a

subset
Generate limit Sets the maximum size in kilobytes of a

generated dataset
Upload limit Sets the maximum size in kilobytes of an

uploaded dataset
Time limit Sets the maximum time in milliseconds

that a dataset generation task is allowed
Hit limit Sets the maximum number of hits per hour

permitted from a specific IP
Abuse limit Sets that length of time in hours an IP

address will be blocked out after exceeding
the hit limit

Deny datasets A comma delimited list of datasets that
should not be accessible

Allow datasets A comma delimited list of datasets that
should be accessible

Figure 14: Sample design of LIS User Interface (Level 3)

Land Information System Software Design Document Version 3.3 10/20/03

32

References

ALMA: http://www.lmd.jussieu.fr/ALMA/

Atlas, R. M., and R. Lucchesi, File Specification for GEOS-DAS Gridded Output.

Available online at: http://dao.gsfc.nasa.gov/DAO_docs/File_Spec_v4.3.html, 2000.

Chen, F., K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Y. Duan, M. Ek, and A.

Betts, “Modeling of land-surface evaporation by four schemes and comparison with FIFE

observations”, J. Geophys. Res., 101, D3, 7251-7268, 1996.

CLM: http://www.cgd.ucar.edu/tss/clm/

Collatz G. J., C. Grivet, J. T. Ball, and J. A. Berry, J. A. “Physiological and

Environmental Regulation of Stomatal Conductance: Photosynthesis and Transpiration:

A Model that includes a Laminar Boundary Layer”, Agric. For. Meteorol. , 5, pp 107 --

136, 1991.

Derber, J. C., D. F. Parrish, and S. J. Lord, “The new global operational analysis system

at the National Meteorological Center”, Wea. And Forecasting, 6, pp 538-547, 1991.

ESMF: http://www.esmf.ucar.edu/

GrADS-DODS server: http://grads.iges.org/grads/gds/

Hamill, T. M., R. P. d’Entremont, and J. T. Bunting, “A description of the Air Force real-

time nephanalysis model”, Wea. Forecasting, 7, pp 238-306, 1992.

Hofstee, H. P., J. J. Likkien, and J. L. A. Van De Snepscheut "A Distributed Implementation of a

Task Pool". Research Directions in High-Level Parallel Programming Languages, pp 338--348,

1991.

Jarvis, P. G., “ The interpretation of leaf water potential and stomatal conductance found

in canopies in the field”, Phil. Trans. R. Soc. London, Ser. B, 273, pp 593 – 610, 1976.

Kopp, T. J. and R. B. Kiess, “The Air Force Global Weather Central cloud analysis

model”, AMS 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, pp 220-222,

1996.

LDAS: http://ldas.gsfc.nasa.gov/

Noah: http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm

Pfaendtner, J., S. Bloom, D. Lamich, M. Seablom, M. Sienkiewicz, J. Stobbie, and A. da

Silva, “Documentation of the Goddard Earth Observing System (GEOS) Data

http://www.lmd.jussieu.fr/ALMA/
http://dao.gsfc.nasa.gov/DAO_docs/File_Spec_v4.3.html
http://www.cgd.ucar.edu/tss/clm/
http://www.esmf.ucar.edu/
http://grads.iges.org/grads/gds/
http://ldas.gsfc.nasa.gov/
http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm

Land Information System Software Design Document Version 3.3 10/20/03

33

Assimilation System – Version 1”, NASA Technical Memorandum 104606, 4, pp 44,

1995.

Reynolds, C. A., T. J. Jackson, and W. J. Rawls, “Estimating available water content by

linking the FAO Soil Map of the World with global soil profile databases and pedo-

transfer functions” American Geophysical Union, Fall Meeting, Eos Trans. AGU, 80,

1999.

Richards, L. A., “Capillary conduction of liquids in porous media”, Physics, 1, pp 318—333,

1931.

Rogers, E., T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin, N. W. Junker, and Y.

Lin, “Changes to the operational "early" eta analysis / forecast system at the National Centers for

Environmental Prediction” Wea. Forecasting, 11, pp 391-413, 1996.

Shapiro, R. “A simple model for the calculation of the flux of direct and diffuse solar radiation

through the atmosphere”, AFGL-TR-87-0200, Air Force Geophysics Lab, Hanscom AFB, MA.

Turk, F. J., G. Rohaly, J. D. Hawkins, E. A. Smith, A. Grose, F. S. Marzano, A. Mugnai, and V.

Levizzani, “Analysis and assimilation of rainfall from blended SSM/I, TRMM, and geostationary

satellite data”, AMS 10th Conf. On Sat. Meteor. and Ocean., Long Beach, CA, 9-14 January, pp

66-69, 2000.

VIC: http://hydrology.princeton.edu/research/lis/index.html.

	Table of Contents
	List of Figures
	Figure 1: Current Land Data Assimilation System (LDAS) structure. It uses CLM and Noah land models.	6
	List of Tables
	Acronyms and Terms
	1 Introduction
	1.1 Purpose and goals
	1.2 Scope
	2.0 Land Surface Modeling and Data Assimilation
	2.1 LIS driver
	2.2 Community Land Model (CLM)
	2.3 The Community Noah Land Surface Model
	2.4 Variable Infiltration Capacity (VIC) Model
	3 LIS software architecture
	3.1 Software data structures
	4 Hardware Platforms for LIS
	4.1 LIS cluster architecture
	System Monitoring
	4.2.1 Hardware monitoring data
	4.2.2 Architecture and implementation

	5 High performance computing in LIS
	5.1 Parallel processing in land surface modeling
	6 Data Management in LIS
	6.1 Data flow and volume in LIS
	6.2 GrADS-DODS server structure
	6.3 Description for data retrieving component
	6.3.1 Implementation

	7 Interoperability and Community Requirements
	7.1 Internal Interoperability
	7.2 External Interoperability
	8 User interface design
	8.1 User interface components
	8.2 User Levels
	References

